cs.AI updates on arXiv.org 07月28日 12:42
Quantum-Cognitive Tunnelling Neural Networks for Military-Civilian Vehicle Classification and Sentiment Analysis
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出将量子隧穿概率引入神经网络模型,提升战场AI对军事与民用车辆及情感的识别能力,并应用于无人机作战场景,赋予AI人类推理特性。

arXiv:2507.18645v1 Announce Type: cross Abstract: Prior work has demonstrated that incorporating well-known quantum tunnelling (QT) probability into neural network models effectively captures important nuances of human perception, particularly in the recognition of ambiguous objects and sentiment analysis. In this paper, we employ novel QT-based neural networks and assess their effectiveness in distinguishing customised CIFAR-format images of military and civilian vehicles, as well as sentiment, using a proprietary military-specific vocabulary. We suggest that QT-based models can enhance multimodal AI applications in battlefield scenarios, particularly within human-operated drone warfare contexts, imbuing AI with certain traits of human reasoning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

量子隧穿 神经网络 战场AI 无人机作战
相关文章