cs.AI updates on arXiv.org 07月28日 12:42
Prompt Engineering and the Effectiveness of Large Language Models in Enhancing Human Productivity
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究大语言模型(LLM)输出效率,通过分析243位调查者数据,发现明确、结构化、情境感知的提示能显著提升任务效率和成果。

arXiv:2507.18638v1 Announce Type: cross Abstract: The widespread adoption of large language models (LLMs) such as ChatGPT, Gemini, and DeepSeek has significantly changed how people approach tasks in education, professional work, and creative domains. This paper investigates how the structure and clarity of user prompts impact the effectiveness and productivity of LLM outputs. Using data from 243 survey respondents across various academic and occupational backgrounds, we analyze AI usage habits, prompting strategies, and user satisfaction. The results show that users who employ clear, structured, and context-aware prompts report higher task efficiency and better outcomes. These findings emphasize the essential role of prompt engineering in maximizing the value of generative AI and provide practical implications for its everyday use.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大语言模型 输出效率 提示策略 AI应用 用户满意度
相关文章