cs.AI updates on arXiv.org 07月28日 12:42
Simulation-Driven Reinforcement Learning in Queuing Network Routing Optimization
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于DDPG和Dyna-style规划的强化学习框架,用于优化复杂队列网络系统中的路由决策,尤其适用于制造和通信领域。通过仿真环境模拟不同场景,实现高效、稳定的路由策略。

arXiv:2507.18795v1 Announce Type: new Abstract: This study focuses on the development of a simulation-driven reinforcement learning (RL) framework for optimizing routing decisions in complex queueing network systems, with a particular emphasis on manufacturing and communication applications. Recognizing the limitations of traditional queueing methods, which often struggle with dynamic, uncertain environments, we propose a robust RL approach leveraging Deep Deterministic Policy Gradient (DDPG) combined with Dyna-style planning (Dyna-DDPG). The framework includes a flexible and configurable simulation environment capable of modeling diverse queueing scenarios, disruptions, and unpredictable conditions. Our enhanced Dyna-DDPG implementation incorporates separate predictive models for next-state transitions and rewards, significantly improving stability and sample efficiency. Comprehensive experiments and rigorous evaluations demonstrate the framework's capability to rapidly learn effective routing policies that maintain robust performance under disruptions and scale effectively to larger network sizes. Additionally, we highlight strong software engineering practices employed to ensure reproducibility and maintainability of the framework, enabling practical deployment in real-world scenarios.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

强化学习 队列网络 路由优化
相关文章