MarkTechPost@AI 前天 14:02
Building a Multi-Node Graph-Based AI Agent Framework for Complex Task Automation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本教程详细介绍了如何使用Google Gemini API构建一个先进的Graph Agent框架。该框架通过定义包含输入、处理、决策和输出等多种节点的图结构,实现智能、多步骤的任务自动化。文章展示了如何使用Python、NetworkX和matplotlib库来建模、可视化和执行代理。教程提供了两个完整的案例:一个研究助手和一个问题解决者,以演示该框架在处理复杂推理工作流中的效率和灵活性。

✨ **Graph Agent框架的核心是模块化节点设计**:通过定义 NodeType 枚举(INPUT, PROCESS, DECISION, OUTPUT)和 AgentNode 数据结构,每个节点都包含唯一的ID、类型、用于与Gemini API交互的prompt以及依赖项。这种结构允许构建灵活、可组合的代理,每个节点代表一个具体的功能。

📊 **研究助手(Research Assistant)的构建流程**:该代理从接收研究主题开始,通过一系列节点(研究计划、文献综述、分析)逐步推进,最后通过一个决策节点(质量检查)来评估研究成果,并输出最终的研究报告。这展示了代理如何遵循结构化的研究生命周期。

💡 **问题解决者(Problem Solver)的构建流程**:这个代理从接收问题陈述开始,然后进行问题分解与分析,生成多种解决方案,评估这些方案的优劣(可行性、成本、有效性),并最终输出详细的实施计划。它体现了代理在自动化解决复杂问题时的逻辑推理和决策能力。

🚀 **框架的执行与可视化**:教程强调了使用NetworkX进行图结构建模和拓扑排序,以确保节点按正确的依赖顺序执行。同时,matplotlib被用于可视化代理的图结构,使得任务的逻辑流程清晰可见。在执行过程中,每个节点都会接收前一个节点的输出作为上下文,并利用Gemini API生成响应,实现端到端的自动化任务处理。

In this tutorial, we guide you through the development of an advanced Graph Agent framework, powered by the Google Gemini API. Our goal is to build intelligent, multi-step agents that execute tasks through a well-defined graph structure of interconnected nodes. Each node represents a specific function, ranging from taking input, performing logical processing, making decisions, and producing outputs. We use Python, NetworkX for graph modeling, and matplotlib for visualization. By the end, we implement and run two complete examples, a Research Assistant and a Problem Solver, to demonstrate how the framework can efficiently handle complex reasoning workflows.

!pip install -q google-generativeai networkx matplotlibimport google.generativeai as genaiimport networkx as nximport matplotlib.pyplot as pltfrom typing import Dict, List, Any, Callableimport jsonimport asynciofrom dataclasses import dataclassfrom enum import EnumAPI_KEY = "use your API key here"genai.configure(api_key=API_KEY)

We begin by installing the necessary libraries, google-generativeai, networkx, and matplotlib, to support our graph-based agent framework. After importing essential modules, we configure the Gemini API using our API key to enable powerful content generation capabilities within our agent system.

Check out the Codes

class NodeType(Enum):    INPUT = "input"    PROCESS = "process"    DECISION = "decision"    OUTPUT = "output"@dataclassclass AgentNode:    id: str    type: NodeType    prompt: str    function: Callable = None    dependencies: List[str] = None

We define a NodeType enumeration to classify different kinds of agent nodes: input, process, decision, and output. Then, using a dataclass AgentNode, we structure each node with an ID, type, prompt, optional function, and a list of dependencies, allowing us to build a modular and flexible agent graph.

def create_research_agent():    agent = GraphAgent()       # Input node    agent.add_node(AgentNode(        id="topic_input",        type=NodeType.INPUT,        prompt="Research topic input"    ))       agent.add_node(AgentNode(        id="research_plan",        type=NodeType.PROCESS,        prompt="Create a comprehensive research plan for the topic. Include 3-5 key research questions and methodology.",        dependencies=["topic_input"]    ))       agent.add_node(AgentNode(        id="literature_review",        type=NodeType.PROCESS,        prompt="Conduct a thorough literature review. Identify key papers, theories, and current gaps in knowledge.",        dependencies=["research_plan"]    ))       agent.add_node(AgentNode(        id="analysis",        type=NodeType.PROCESS,        prompt="Analyze the research findings. Identify patterns, contradictions, and novel insights.",        dependencies=["literature_review"]    ))       agent.add_node(AgentNode(        id="quality_check",        type=NodeType.DECISION,        prompt="Evaluate research quality. Is the analysis comprehensive? Are there missing perspectives? Return 'APPROVED' or 'NEEDS_REVISION' with reasons.",        dependencies=["analysis"]    ))       agent.add_node(AgentNode(        id="final_report",        type=NodeType.OUTPUT,        prompt="Generate a comprehensive research report with executive summary, key findings, and recommendations.",        dependencies=["quality_check"]    ))       return agent

We create a research agent by sequentially adding specialized nodes to the graph. Starting with a topic input, we define a process flow that includes planning, literature review, and analysis. The agent then makes a quality decision based on the study and finally generates a comprehensive research report, capturing the full lifecycle of a structured research workflow.

Check out the Codes

def create_problem_solver():    agent = GraphAgent()       agent.add_node(AgentNode(        id="problem_input",        type=NodeType.INPUT,        prompt="Problem statement"    ))       agent.add_node(AgentNode(        id="problem_analysis",        type=NodeType.PROCESS,        prompt="Break down the problem into components. Identify constraints and requirements.",        dependencies=["problem_input"]    ))       agent.add_node(AgentNode(        id="solution_generation",        type=NodeType.PROCESS,        prompt="Generate 3 different solution approaches. For each, explain the methodology and expected outcomes.",        dependencies=["problem_analysis"]    ))       agent.add_node(AgentNode(        id="solution_evaluation",        type=NodeType.DECISION,        prompt="Evaluate each solution for feasibility, cost, and effectiveness. Rank them and select the best approach.",        dependencies=["solution_generation"]    ))       agent.add_node(AgentNode(        id="implementation_plan",        type=NodeType.OUTPUT,        prompt="Create a detailed implementation plan with timeline, resources, and success metrics.",        dependencies=["solution_evaluation"]    ))       return agent

We build a problem-solving agent by defining a logical sequence of nodes, starting from the reception of the problem statement. The agent analyzes the problem, generates multiple solution approaches, evaluates them based on feasibility and effectiveness, and concludes by producing a structured implementation plan, enabling automated, step-by-step resolution of the problem.

Check out the Codes

def run_research_demo():    """Run the research agent demo"""    print(" Advanced Graph Agent Framework Demo")    print("=" * 50)       research_agent = create_research_agent()    print("\n Research Agent Graph Structure:")    research_agent.visualize()       print("\n Executing Research Task...")       research_agent.results["topic_input"] = "Artificial Intelligence in Healthcare"       execution_order = list(nx.topological_sort(research_agent.graph))       for node_id in execution_order:        if node_id == "topic_input":            continue                   context = {}        node = research_agent.nodes[node_id]               if node.dependencies:            for dep in node.dependencies:                context[dep] = research_agent.results.get(dep, "")               prompt = node.prompt        if context:            context_str = "\n".join([f"{k}: {v}" for k, v in context.items()])            prompt = f"Context:\n{context_str}\n\nTask: {prompt}"               try:            response = research_agent.model.generate_content(prompt)            result = response.text.strip()            research_agent.results[node_id] = result            print(f"✓ {node_id}: {result[:100]}...")        except Exception as e:            research_agent.results[node_id] = f"Error: {str(e)}"            print(f"✗ {node_id}: Error - {str(e)}")       print("\n Research Results:")    for node_id, result in research_agent.results.items():        print(f"\n{node_id.upper()}:")        print("-" * 30)        print(result)       return research_agent.resultsdef run_problem_solver_demo():    """Run the problem solver demo"""    print("\n" + "=" * 50)    problem_solver = create_problem_solver()    print("\n Problem Solver Graph Structure:")    problem_solver.visualize()       print("\n Executing Problem Solving...")       problem_solver.results["problem_input"] = "How to reduce carbon emissions in urban transportation"       execution_order = list(nx.topological_sort(problem_solver.graph))       for node_id in execution_order:        if node_id == "problem_input":            continue                   context = {}        node = problem_solver.nodes[node_id]               if node.dependencies:            for dep in node.dependencies:                context[dep] = problem_solver.results.get(dep, "")               prompt = node.prompt        if context:            context_str = "\n".join([f"{k}: {v}" for k, v in context.items()])            prompt = f"Context:\n{context_str}\n\nTask: {prompt}"               try:            response = problem_solver.model.generate_content(prompt)            result = response.text.strip()            problem_solver.results[node_id] = result            print(f"✓ {node_id}: {result[:100]}...")        except Exception as e:            problem_solver.results[node_id] = f"Error: {str(e)}"            print(f"✗ {node_id}: Error - {str(e)}")       print("\n Problem Solving Results:")    for node_id, result in problem_solver.results.items():        print(f"\n{node_id.upper()}:")        print("-" * 30)        print(result)       return problem_solver.resultsprint(" Running Research Agent Demo:")research_results = run_research_demo()print("\n Running Problem Solver Demo:")problem_results = run_problem_solver_demo()print("\n All demos completed successfully!")

We conclude the tutorial by running two powerful demo agents, one for research and another for problem-solving. In each case, we visualize the graph structure, initialize the input, and execute the agent node-by-node using a topological order. With Gemini generating contextual responses at every step, we observe how each agent autonomously progresses through planning, analysis, decision-making, and output generation, ultimately showcasing the full potential of our graph-based framework.

In conclusion, we successfully developed and executed intelligent agents that break down and solve tasks step-by-step, utilizing a graph-driven architecture. We see how each node processes context-dependent prompts, leverages Gemini’s capabilities for content generation, and passes results to subsequent nodes. This modular design enhances flexibility and also allows us to visualize the logic flow clearly.

Check out the Codes. All credit for this research goes to the researchers of this project. SUBSCRIBE NOW to our AI Newsletter

The post Building a Multi-Node Graph-Based AI Agent Framework for Complex Task Automation appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Graph Agent Gemini API AI框架 任务自动化 Python
相关文章