从原子到生命到浩瀚宇宙,物理系统中的许多现象涉及到广阔的尺度。重整化群(renormalization group)是在不同尺度下考察物理系统变化的数学工具,帮助我们理解系统在不同尺度下的行为。为了纪念物理学家 Kenneth Wilson 提出重整化群理论大约50年,近期 Nature Physics 推出评论文章合集,在其中一篇文章中,美国 IBM T. J. Watson 研究中心研究员涂豫海介绍了利用重整化方法研究非平衡集群(flocking)的研究,并认为将粗粒化和重整化群的基本思想引入活性系统和生命系统的研究中,是物理学和生物学中最有前景的方向之一。
Ken Wilson 在重整化群理论方面的工作源于对平衡系统中临界现象的研究(有关Wilson对该主题的评论,请参见参考文献[1])。重整化群方法产生了即刻和持久的影响。然而,在1982年底诺贝尔奖颁奖典礼的演讲中,Ken Wilson 指出:“在我看来,使用重整化群和展开完成的大量研究只是一个开始,未来二十年(或者可能需要下一个世纪)人们将发现更大范围的应用研究的。”在这篇评论中,我将描述我自己在发展一种这样的应用方面的实践:非平衡随机动力系统(non-equilibrium stochastic dynamical systems)的研究。课程推荐
除集群外,基于重整化群的方法的多功能性和强大性已在诸如活性物质和生命系统在内的不同非平衡系统中得到了证明。例如,它已经被用于开发[22]一种粗粒化方法,来研究大型神经元网络中的神经活动,该方法揭示了大脑不同部位神经元放电模式的准普适标度行为[23]。我们最近的工作中构建了一种态空间方法,来理解非平衡反应网络中不同尺度上的能量耗散率的逆幂律标度[24,25]。 图3. 重整化群方法用于神经科学研究。|来源:Tiberi et al. 非平衡生物系统经常表现出与平衡态生物系统截然不同的意想不到的行为。然而,与平衡态统计物理模型一样,它们在不同尺度上表现出集体行为。我相信将粗粒化和重整化群的基本思想引入活性系统和生命系统的研究中,是物理学和生物学中最有前景的研究方向之一。核心概念 重整化群 在理论物理中,重整化群(renormalization group,简称RG)是一个在不同尺度下考察物理系统变化的数学工具。标度上的变化称为“标度变换”。重整化群与“标度不变性”和“共形不变性”关系紧密,都与自相似有关。在重整化理论中,系统在某一个标度上自相似于一个更小的标度,但描述它们组成的参量值不相同。系统的组成可以是原子,基本粒子,自旋等。系统的变量是以系统组成之间的相互作用来描述。 热力学平衡态 热力学平衡态指一个热力学系统在没有外界影响的条件下,系统各部分的宏观属性(如物质的量、能量、体积等)在长时间内不发生任何变化的状态。 临界维数 在物理学中相变的重整化群分析中,临界维数是相变特征发生变化的空间维度。在临界维数以下没有相变。在临界维数以上,该理论的临界指数与平均场论中的临界指数相同。V.Ginzburg提出了一个在平均场论中获得临界维数的优美准则。 Kardar-Parisi-Zhang方程 在数学中,Kardar–Parisi–Zhang(KPZ)方程是一个非线性随机偏微分方程,由Mehran Kardar、Giorgio Parisi和Yi-Cheng Zhang于1986年提出。它描述了作为空间和时间坐标的函数的高度场随时间的变化。 其中,是白高斯噪声。 通过重整化群,KPZ方程被推测为许多表面生长模型的场论,如Eden模型、弹道沉积(ballistic deposition)和弱不对称单步固体对固体过程(SOS)模型(weakly asymmetric single step solid on solid process model)。Bertini和Giacomin在SOS模型的情况下给出了这一推测的一个严格证明。 Mermin-Wagner定理 在量子场论和统计力学中,Mermin–Wagner定理(也称为Mermin–Wagner–Hohenberg定理、Mermin–Wagner–Berezinskii定理或Coleman定理)指出,在d≤2维度具有足够短程相互作用的系统中,连续对称性在有限温度下不能自发破缺。直观地说,这意味着可以在几乎没有能量消耗的情况下产生长程涨落,而且由于它们增加了熵,系统倾向于产生。这是因为,如果发生这种自发的对称性破缺,那么相应的无质量Goldstone玻色子将具有红外发散的关联函数。 David Mermin、Herbert Wagner(1966)和Pierre Hohenberg(1967)在统计力学中以及Sidney Coleman(1973)在量子场论中严格证明了d≤2维无限系统中不存在自发对称性破缺。该定理不适用于离散对称性,这可以在二维伊辛模型中看出。 Vicsek模型 Vicsek模型是一种用于描述活性物质的数学模型。物理学家研究活性物质的一个动机是与该领域相关的丰富现象学。集体运动和集群是研究最多的现象之一。在为从微观描述中捕捉这种行为而开发的大量模型中,最著名的是Tamás-Vicsek等人1995年引入的模型。 物理学家对这个模型非常感兴趣,因为它是最小的并且描述了一种普适性。它由点状自推进粒子组成,这些粒子以恒定的速度演化,并在存在噪音的情况下使其速度与邻居的速度一致。这样的模型显示了对齐后的高密度粒子或低噪声下的集体运动。学者简介涂豫海,1987年毕业于中国科学技术大学,1991年在加州大学圣地亚哥分校获得物理学博士学位。1991年至1994年,他是加州理工学院的 Division Prize Fellow,1994年加入IBM沃森研究中心担任研究员,并于2003-2015年担任理论组组长。他自2004年起担任美国物理学会(APS)会士,并于2017年担任美国物理学会生物物理部主席。他也是美国科学促进会(AAAS)会士。 他的研究兴趣包括非平衡统计物理、生物物理、理论神经科学以及近期的深度学习理论基础。其中对生物物理学的研究兴趣有两个方面:通过使用物理学的工具(计算建模、统计物理、动力系统分析)来理解重要的生物现象(如信号转导);从对生物系统的研究中揭示一般的设计原理和新的物理学(如非平衡热力学、随机动力学)。当前的研究兴趣之一是理解生命系统中信息处理的动力学。 他在多个领域做出了开创性贡献,包括集群理论、细菌趋药性(bacterial chemotaxis)的定量模型、昼夜节律时钟(circadium clock)以及生物系统中的能量-速度-精度关系。由于在理论统计物理方面的工作,他与John Toner和Tamas Vicsek一起被美国物理学会授予2020年Lars Onsager奖:“因为他在集群理论方面的开创性工作,这标志着活性物质领域的诞生,并对其发展做出了巨大贡献。”学者主页:https://researcher.draco.res.ibm.com/researcher/view.php?person=us-yuhai
参考文献
1. Wilson, K. G. Rev. Mod. Phys. 47, 773–840 (1975).2. Kadanoff, L. P. Phys. Phys. Fiz. 2, 263–272 (1966).3. Wilson, K. G. & Fisher, M. E. Phys. Rev. Lett. 28, 240–243 (1972).4. Halperin, B. I., Hohenberg, P. C. & Ma, S.-k Phys. Rev. Lett. 29, 1548–1551 (1972).5. Bausch, R., Janssen, H. K. & Wagner, H. Z. Phys. B Condens. Matter 24, 113–127 (1976).6. Hohenberg, P. C. & Halperin, B. I. Rev. Mod. Phys. 49, 435–479 (1977).7. Kardar, M., Parisi, G. & Zhang, Y.-C. Phys. Rev. Lett. 56, 889–892 (1986).8. Medina, E., Hwa, T., Kardar, M. & Zhang, Y.-C. Phys. Rev. A 39, 3053–3075 (1989).9. Canet, L., Chaté, H., Delamotte, B. & Wschebor, N. Phys. Rev. Lett. 104, 150601 (2010).10. Kessler, D. A., Levine, H. & Tu, Y. Phys. Rev. A 43, 4551–4554 (1991).11. Tu, Y. Phys. Rev. Lett. 73, 3109–3112 (1994).12. Reynolds, C. W. SIGGRAPH Comput. Graph. 21, 25–34 (1987).13. Mermin, N. D. & Wagner, H. Phys. Rev. Lett. 17, 1133–1136 (1966).14. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I. & Shochet, O. Phys. Rev. Lett. 75, 1226–1229 (1995).15. Toner, J. & Tu, Y. Phys. Rev. Lett. 75, 4326–4329 (1995).16. Tu, Y., Toner, J. & Ulm, M. Phys. Rev. Lett. 80, 4819–4822 (1998).17. Toner, J. & Tu, Y. Phys. Rev. E 58, 4828–4858 (1998).18. Chen, L., Lee, C. F., Maitra, A. & Toner, J. Phys. Rev. Lett. 129, 188004 (2022).19. Cavagna, A. et al. Nat. Phys. 19, 1043–1049 (2023).20. Gazi, V. & Passino, K. IEEE T. Automat. Contr. 48, 692–697 (2003).21. Helbing, D. Rev. Mod. Phys. 73, 1067–1141 (2001).22. Meshulam, L., Gauthier, J. L., Brody, C. D., Tank, D. W. & Bialek, W. Phys. Rev. Lett. 123, 178103 (2019).23. Morales, G. B., di Santo, S. & Muñoz, M. A. Proc. Natl Acad. Sci. USA 120, e2208998120 (2023).24. Yu, Q., Zhang, D. & Tu, Y. Phys. Rev. Lett. 126, 080601 (2021).25. Yu, Q. & Tu, Y. Phys. Rev. E 105, 044140 (2022).