MarkTechPost@AI 07月26日 09:07
EraRAG: A Scalable, Multi-Layered Graph-Based Retrieval System for Dynamic and Growing Corpora
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

大型语言模型(LLMs)在自然语言处理领域取得了显著进展,但在处理实时更新的事实、领域特定信息或复杂的多跳推理方面仍存在局限。检索增强生成(RAG)方法通过允许语言模型从外部来源检索和整合信息来弥补这些不足。然而,大多数基于图的RAG系统针对静态语料库进行了优化,在数据持续增长时,在效率、准确性和可扩展性方面面临挑战。EraRAG是一个新颖的检索增强生成框架,专为动态、不断扩展的语料库设计。它通过局部、选择性更新来解决这些问题,仅修改受数据变化影响的部分检索图,从而显著降低了更新成本,同时保持了高准确性和多功能查询支持。

💡 **EraRAG的创新之处在于其处理动态数据的能力**:与需要重建整个检索结构的传统图基RAG系统不同,EraRAG采用了局部、选择性更新机制。当新数据到来时,它仅更新受影响的图部分,极大地提高了效率并降低了计算和Token成本,特别适用于新闻、研究存储库等不断增长的数据集。

🚀 **高效的数据组织与检索依赖于超平面LSH和多层图结构**:EraRAG利用超平面局部敏感哈希(LSH)将文本块映射到二进制哈希码,实现语义相似性分组。在此基础上构建的多层图结构,通过语言模型对各层级的语义进行摘要,使得模型能够高效地检索细粒度事实或高层级语义信息,满足不同查询需求。

✅ **EraRAG在性能上表现卓越,显著降低成本并保持高精度**:实验证明,EraRAG的图重构时间和Token使用量相比领先方法减少高达95%,同时在各种问答基准测试中,其准确性和召回率均优于其他检索架构。这种在效率和精度之间的平衡,使得EraRAG在快速变化的环境中更加实用和可靠。

🔄 **可复现性和确定性是EraRAG稳定性的关键**:与标准的LSH聚类不同,EraRAG在初始哈希过程中保留了超平面的集合,保证了桶分配的确定性和可复现性。这对于确保模型在长时间内的持续、高效更新至关重要,使其成为一个稳定可靠的检索框架。

Large Language Models (LLMs) have revolutionized many areas of natural language processing, but they still face critical limitations when dealing with up-to-date facts, domain-specific information, or complex multi-hop reasoning. Retrieval-Augmented Generation (RAG) approaches aim to address these gaps by allowing language models to retrieve and integrate information from external sources. However, most existing graph-based RAG systems are optimized for static corpora and struggle with efficiency, accuracy, and scalability when the data is continually growing—such as in news feeds, research repositories, or user-generated online content.

Introducing EraRAG: Efficient Updates for Evolving Data

Recognizing these challenges, researchers from Huawei, The Hong Kong University of Science and Technology, and WeBank have developed EraRAG, a novel retrieval-augmented generation framework purpose-built for dynamic, ever-expanding corpora. Rather than rebuilding the entire retrieval structure whenever new data arrives, EraRAG relies on localized, selective updates that touch only those parts of the retrieval graph affected by the changes.

Core Features:

Performance and Impact

Comprehensive experiments on a variety of question answering benchmarks demonstrate that EraRAG:

Practical Implications

EraRAG offers a scalable and robust retrieval framework ideal for real-world settings where data is continuously added—such as live news, scholarly archives, or user-driven platforms. It strikes a balance between retrieval efficiency and adaptability, making LLM-backed applications more factual, responsive, and trustworthy in fast-changing environments.


Check out the Paper and GitHub. All credit for this research goes to the researchers of this project | Meet the AI Dev Newsletter read by 40k+ Devs and Researchers from NVIDIA, OpenAI, DeepMind, Meta, Microsoft, JP Morgan Chase, Amgen, Aflac, Wells Fargo and 100s more [SUBSCRIBE NOW]

The post EraRAG: A Scalable, Multi-Layered Graph-Based Retrieval System for Dynamic and Growing Corpora appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

EraRAG 检索增强生成 大型语言模型 动态数据 图数据库
相关文章