cs.AI updates on arXiv.org 07月25日 12:28
GLiNER2: An Efficient Multi-Task Information Extraction System with Schema-Driven Interface
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为GLiNER2的统一框架,该框架增强了原始GLiNER架构,支持命名实体识别、文本分类和分层结构数据提取,同时保持高效和紧凑,并通过直观的方案化接口实现多任务组合,实验证明其在提取和分类任务中表现优异,且部署便捷。

arXiv:2507.18546v1 Announce Type: cross Abstract: Information extraction (IE) is fundamental to numerous NLP applications, yet existing solutions often require specialized models for different tasks or rely on computationally expensive large language models. We present GLiNER2, a unified framework that enhances the original GLiNER architecture to support named entity recognition, text classification, and hierarchical structured data extraction within a single efficient model. Built pretrained transformer encoder architecture, GLiNER2 maintains CPU efficiency and compact size while introducing multi-task composition through an intuitive schema-based interface. Our experiments demonstrate competitive performance across extraction and classification tasks with substantial improvements in deployment accessibility compared to LLM-based alternatives. We release GLiNER2 as an open-source pip-installable library with pre-trained models and documentation at https://github.com/fastino-ai/GLiNER2.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

信息提取 GLiNER2 命名实体识别 文本分类 开源框架
相关文章