cs.AI updates on arXiv.org 07月25日 12:28
Restoring Rhythm: Punctuation Restoration Using Transformer Models for Bangla, a Low-Resource Language
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了基于XLM-RoBERTa-large模型的孟加拉语无标点文本自动标点恢复技术,通过构建大型训练语料库和应用数据增强技术,实现了高准确率,为低资源语言NLP研究提供支持。

arXiv:2507.18448v1 Announce Type: cross Abstract: Punctuation restoration enhances the readability of text and is critical for post-processing tasks in Automatic Speech Recognition (ASR), especially for low-resource languages like Bangla. In this study, we explore the application of transformer-based models, specifically XLM-RoBERTa-large, to automatically restore punctuation in unpunctuated Bangla text. We focus on predicting four punctuation marks: period, comma, question mark, and exclamation mark across diverse text domains. To address the scarcity of annotated resources, we constructed a large, varied training corpus and applied data augmentation techniques. Our best-performing model, trained with an augmentation factor of alpha = 0.20%, achieves an accuracy of 97.1% on the News test set, 91.2% on the Reference set, and 90.2% on the ASR set. Results show strong generalization to reference and ASR transcripts, demonstrating the model's effectiveness in real-world, noisy scenarios. This work establishes a strong baseline for Bangla punctuation restoration and contributes publicly available datasets and code to support future research in low-resource NLP.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

XLM-RoBERTa 孟加拉语 自动标点恢复 低资源语言 NLP
相关文章