cs.AI updates on arXiv.org 07月25日 12:28
LoRA-Leak: Membership Inference Attacks Against LoRA Fine-tuned Language Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

研究指出,LoRA微调的语言模型易受成员推断攻击,并提出LoRA-Leak框架进行评估。实验发现,仅在保守微调设置下,LoRA微调模型的AUC仅为0.775,并提出有效缓解攻击的方法。

arXiv:2507.18302v1 Announce Type: cross Abstract: Language Models (LMs) typically adhere to a "pre-training and fine-tuning" paradigm, where a universal pre-trained model can be fine-tuned to cater to various specialized domains. Low-Rank Adaptation (LoRA) has gained the most widespread use in LM fine-tuning due to its lightweight computational cost and remarkable performance. Because the proportion of parameters tuned by LoRA is relatively small, there might be a misleading impression that the LoRA fine-tuning data is invulnerable to Membership Inference Attacks (MIAs). However, we identify that utilizing the pre-trained model can induce more information leakage, which is neglected by existing MIAs. Therefore, we introduce LoRA-Leak, a holistic evaluation framework for MIAs against the fine-tuning datasets of LMs. LoRA-Leak incorporates fifteen membership inference attacks, including ten existing MIAs, and five improved MIAs that leverage the pre-trained model as a reference. In experiments, we apply LoRA-Leak to three advanced LMs across three popular natural language processing tasks, demonstrating that LoRA-based fine-tuned LMs are still vulnerable to MIAs (e.g., 0.775 AUC under conservative fine-tuning settings). We also applied LoRA-Leak to different fine-tuning settings to understand the resulting privacy risks. We further explore four defenses and find that only dropout and excluding specific LM layers during fine-tuning effectively mitigate MIA risks while maintaining utility. We highlight that under the "pre-training and fine-tuning" paradigm, the existence of the pre-trained model makes MIA a more severe risk for LoRA-based LMs. We hope that our findings can provide guidance on data privacy protection for specialized LM providers.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LoRA 隐私攻击 语言模型 成员推断攻击 数据隐私
相关文章