cs.AI updates on arXiv.org 07月25日 12:28
Differentiable Motion Manifold Primitives for Reactive Motion Generation under Kinodynamic Constraints
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种新型神经网络架构DMMP,通过离线学习和在线搜索实现高维系统的实时运动生成,并在实验中表现出优越性能。

arXiv:2410.12193v2 Announce Type: replace-cross Abstract: Real-time motion generation -- which is essential for achieving reactive and adaptive behavior -- under kinodynamic constraints for high-dimensional systems is a crucial yet challenging problem. We address this with a two-step approach: offline learning of a lower-dimensional trajectory manifold of task-relevant, constraint-satisfying trajectories, followed by rapid online search within this manifold. Extending the discrete-time Motion Manifold Primitives (MMP) framework, we propose Differentiable Motion Manifold Primitives (DMMP), a novel neural network architecture that encodes and generates continuous-time, differentiable trajectories, trained using data collected offline through trajectory optimizations, with a strategy that ensures constraint satisfaction -- absent in existing methods. Experiments on dynamic throwing with a 7-DoF robot arm demonstrate that DMMP outperforms prior methods in planning speed, task success, and constraint satisfaction.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

实时运动生成 高维系统 神经网络架构
相关文章