cs.AI updates on arXiv.org 07月25日 12:28
RUMI: Rummaging Using Mutual Information
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为RUMI的方法,用于在线生成机器人动作序列,以在视觉遮挡环境中收集已知可动物体的位姿信息。RUMI利用物体位姿分布与机器人轨迹之间的互信息进行动作规划,通过闭环模型预测控制(MPC)框架实时更新位姿分布,实现了高效的物体位姿估计和信息收集。

arXiv:2408.10450v2 Announce Type: replace-cross Abstract: This paper presents Rummaging Using Mutual Information (RUMI), a method for online generation of robot action sequences to gather information about the pose of a known movable object in visually-occluded environments. Focusing on contact-rich rummaging, our approach leverages mutual information between the object pose distribution and robot trajectory for action planning. From an observed partial point cloud, RUMI deduces the compatible object pose distribution and approximates the mutual information of it with workspace occupancy in real time. Based on this, we develop an information gain cost function and a reachability cost function to keep the object within the robot's reach. These are integrated into a model predictive control (MPC) framework with a stochastic dynamics model, updating the pose distribution in a closed loop. Key contributions include a new belief framework for object pose estimation, an efficient information gain computation strategy, and a robust MPC-based control scheme. RUMI demonstrates superior performance in both simulated and real tasks compared to baseline methods.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器人 在线生成动作序列 位姿估计 模型预测控制
相关文章