cs.AI updates on arXiv.org 07月25日 12:28
Are LLM Belief Updates Consistent with Bayes' Theorem?
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过提出贝叶斯一致性系数(BCC)指标,测试了大型语言模型在接收证据时,其命题信念更新与贝叶斯定理的一致性。研究发现,大型语言模型在信念更新上更符合贝叶斯定理,对LLMs的理解与治理具有重要意义。

arXiv:2507.17951v1 Announce Type: cross Abstract: Do larger and more capable language models learn to update their "beliefs" about propositions more consistently with Bayes' theorem when presented with evidence in-context? To test this, we formulate a Bayesian Coherence Coefficient (BCC) metric and generate a dataset with which to measure the BCC. We measure BCC for multiple pre-trained-only language models across five model families, comparing against the number of model parameters, the amount of training data, and model scores on common benchmarks. Our results provide evidence for our hypothesis that larger and more capable pre-trained language models assign credences that are more coherent with Bayes' theorem. These results have important implications for our understanding and governance of LLMs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

语言模型 贝叶斯定理 信念更新 大型语言模型 LLMs治理
相关文章