cs.AI updates on arXiv.org 07月25日 12:28
Explainable Graph Neural Networks via Structural Externalities
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于合作博弈论和社会外部性的新框架GraphEXT,通过将节点划分成联盟并分解成独立子图,提高图神经网络的解释性。

arXiv:2507.17848v1 Announce Type: cross Abstract: Graph Neural Networks (GNNs) have achieved outstanding performance across a wide range of graph-related tasks. However, their "black-box" nature poses significant challenges to their explainability, and existing methods often fail to effectively capture the intricate interaction patterns among nodes within the network. In this work, we propose a novel explainability framework, GraphEXT, which leverages cooperative game theory and the concept of social externalities. GraphEXT partitions graph nodes into coalitions, decomposing the original graph into independent subgraphs. By integrating graph structure as an externality and incorporating the Shapley value under externalities, GraphEXT quantifies node importance through their marginal contributions to GNN predictions as the nodes transition between coalitions. Unlike traditional Shapley value-based methods that primarily focus on node attributes, our GraphEXT places greater emphasis on the interactions among nodes and the impact of structural changes on GNN predictions. Experimental studies on both synthetic and real-world datasets show that GraphEXT outperforms existing baseline methods in terms of fidelity across diverse GNN architectures , significantly enhancing the explainability of GNN models.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

图神经网络 可解释性 合作博弈论
相关文章