cs.AI updates on arXiv.org 07月25日 12:28
Quantum Machine Learning in Precision Medicine and Drug Discovery -- A Game Changer for Tailored Treatments?
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了量子计算在精准医疗领域的应用潜力,包括提高诊断准确性和个性化治疗,同时分析了将量子技术融入医疗的挑战及解决方案。

arXiv:2502.18639v2 Announce Type: replace-cross Abstract: The digitization of healthcare presents numerous challenges, including the complexity of biological systems, vast data generation, and the need for personalized treatment plans. Traditional computational methods often fall short, leading to delayed and sometimes ineffective diagnoses and treatments. Quantum Computing (QC) and Quantum Machine Learning (QML) offer transformative advancements with the potential to revolutionize medicine. This paper summarizes areas where QC promises unprecedented computational power, enabling faster, more accurate diagnostics, personalized treatments, and enhanced drug discovery processes. However, integrating quantum technologies into precision medicine also presents challenges, including errors in algorithms and high costs. We show that mathematically-based techniques for specifying, developing, and verifying software (formal methods) can enhance the reliability and correctness of QC. By providing a rigorous mathematical framework, formal methods help to specify, develop, and verify systems with high precision. In genomic data analysis, formal specification languages can precisely (1) define the behavior and properties of quantum algorithms designed to identify genetic markers associated with diseases. Model checking tools can systematically explore all possible states of the algorithm to (2) ensure it behaves correctly under all conditions, while theorem proving techniques provide mathematical (3) proof that the algorithm meets its specified properties, ensuring accuracy and reliability. Additionally, formal optimization techniques can (4) enhance the efficiency and performance of quantum algorithms by reducing resource usage, such as the number of qubits and gate operations. Therefore, we posit that formal methods can significantly contribute to enabling QC to realize its full potential as a game changer in precision medicine.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

量子计算 精准医疗 算法优化 基因组分析 形式方法
相关文章