MarkTechPost@AI 07月24日 17:05
Google Researchers Introduced LSM-2 with Adaptive and Inherited Masking (AIM): Enabling Direct Learning from Incomplete Wearable Data
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

Google DeepMind研究团队推出了LSM-2框架及AIM策略,旨在解决可穿戴设备数据普遍存在的缺失问题。该框架无需进行数据插补,即可从不完整的数据流中学习稳健的表征,这对于依赖连续信号的自监督学习和基础模型至关重要。LSM-2通过结合继承掩码和人工掩码,能够动态适应真实世界的数据缺失模式,并在多种下游任务中展现出优越的性能,包括疾病预测和活动识别,同时在处理大规模、多模态传感器数据方面表现出色,为可穿戴健康AI的应用开辟了新途径。

wearable设备数据普遍存在缺失现象,而非随机丢失,常表现为长段的缺失或传感器选择性关闭,这给传统的自监督学习模型带来了巨大挑战。LSM-2框架通过引入“继承掩码”(标记真实缺失)和“人工掩码”(随机掩盖观测数据)相结合的AIM策略,使模型能够直接从这些不完整的数据中学习,而无需额外的数据插补步骤,提高了模型处理现实世界数据的鲁棒性。

AIM策略的关键在于其混合掩码机制,它将两种掩码类型进行联合处理,并利用Transformer编码器-解码器结构,实现了对数据缺失的动态适应。该策略通过模拟各种数据缺失模式(如随机丢弃80%的token、丢弃时间窗口或传感器通道)进行预训练,使得LSM-2能够有效地处理长序列数据,并对不同类型的缺失具有良好的泛化能力。

在评估中,LSM-2在处理缺失数据方面表现出显著优势。例如,在随机丢弃80%数据时,其均方误差(MSE)降低了33%;在恢复缺失信号方面,性能提升高达77%。与LSM-1相比,在移除特定传感器或时间段数据时,LSM-2的性能下降平均减少了73%,证明了其在面对真实世界数据碎片化时的强大韧性。

LSM-2不仅能够直接处理不完整数据,还具备生成和判别能力,能够重建缺失信号并生成适用于多种下游任务的嵌入。即使在模型主干冻结的情况下,仅使用简单的线性探针,LSM-2也能在临床/个体层面和事件层面的任务中取得最先进的成果,优于监督学习和对比学习方法,显示了其在可穿戴健康监测领域的广泛应用潜力。

Introduction

Wearable devices are transforming health monitoring by enabling continuous collection of physiological and behavioral signals such as heart rate, activity, temperature, and skin conductance. However, the real-world data that these devices generate is highly prone to missingness due to sensor failures, device removal, charging, motion artifacts, battery-saving modes, and other interruptions. This presents a significant challenge for self-supervised learning (SSL) and foundation models, which typically expect complete, regular data streams. Past solutions often relied on data imputation or discarding incomplete instances, which risks introducing bias or wasting valuable information.

A team of researchers from Google DeepMind introduced LSM-2 (Large Sensor Model 2) framework—accompanied by the new Adaptive and Inherited Masking (AIM) strategy—addresses these issues directly, learning robust representations from incomplete wearable sensor data without explicit imputation. Below, we examine the technical innovations, empirical results, and key insights from this advancement.

The Challenge: Wearable Data Missingness

Adaptive and Inherited Masking (AIM): Technical Approach

Key Concepts

AIM integrates two masking types for robust learning:

These masks are unioned and handled by a transformer-based encoder-decoder structure, enabling the model to:

Masking Strategies for Pretraining

AIM combines the efficiency of dropout masking (removal from computation) and the flexibility of attention masking (support for dynamically-varying missingness), allowing the model to scale to long input sequences (day-long, >3,000 tokens).

Dataset and Pretraining Details

Evaluation and Results

Downstream Tasks

AIM-based LSM-2 was assessed on:

Quantitative Results

TaskMetricBest LSM-1LSM-2 w/ AIMImprovement
HypertensionF10.6400.651+1.7%
Activity RecognitionF10.4700.474+0.8%
BMI (regression)Corr0.6670.673+1.0%
Random Imputation (80%)MSE (↓)0.300.20+33% lower error
2-signal RecoveryMSE (↓)0.730.17+77% lower error

Technical Insights

Conclusion

LSM-2 with Adaptive and Inherited Masking presents a major step forward for deploying AI-driven health insights using real-world wearable sensor data. By directly embracing ubiquitous, structured missingness, and unifying generative and discriminative capabilities under one efficient and robust foundation model, this approach lays crucial groundwork for the future of wearable and health AI in realistic, imperfect data environments.


Check out the Paper and Technical details. All credit for this research goes to the researchers of this project.

Meet the AI Dev Newsletter read by 40k+ Devs and Researchers from NVIDIA, OpenAI, DeepMind, Meta, Microsoft, JP Morgan Chase, Amgen, Aflac, Wells Fargo and 100s more [SUBSCRIBE NOW]

The post Google Researchers Introduced LSM-2 with Adaptive and Inherited Masking (AIM): Enabling Direct Learning from Incomplete Wearable Data appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LSM-2 AIM策略 可穿戴设备 缺失数据 自监督学习
相关文章