cs.AI updates on arXiv.org 07月24日 13:31
Cross-domain Multi-step Thinking: Zero-shot Fine-grained Traffic Sign Recognition in the Wild
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本研究提出跨域多步思维(CdMT)框架,利用大型多模态模型的多步推理能力,有效解决无监督细粒度交通标志识别难题,特别是在跨国家场景下,识别准确率显著提升。

arXiv:2409.01534v2 Announce Type: replace-cross Abstract: In this study, we propose Cross-domain Multi-step Thinking (CdMT) to improve zero-shot fine-grained traffic sign recognition (TSR) performance in the wild. Zero-shot fine-grained TSR in the wild is challenging due to the cross-domain problem between clean template traffic signs and real-world counterparts, and existing approaches particularly struggle with cross-country TSR scenarios, where traffic signs typically differ between countries. The proposed CdMT framework tackles these challenges by leveraging the multi-step reasoning capabilities of large multimodal models (LMMs). We introduce context, characteristic, and differential descriptions to design multiple thinking processes for LMMs. Context descriptions, which are enhanced by center coordinate prompt optimization, enable the precise localization of target traffic signs in complex road images and filter irrelevant responses via novel prior traffic sign hypotheses. Characteristic descriptions, which are derived from in-context learning with template traffic signs, bridge cross-domain gaps and enhance fine-grained TSR. Differential descriptions refine the multimodal reasoning ability of LMMs by distinguishing subtle differences among similar signs. CdMT is independent of training data and requires only simple and uniform instructions, enabling it to achieve cross-country TSR. We conducted extensive experiments on three benchmark datasets and two real-world datasets from different countries. The proposed CdMT framework achieved superior performance compared with other state-of-the-art methods on all five datasets, with recognition accuracies of 0.93, 0.89, 0.97, 0.89, and 0.85 on the GTSRB, BTSD, TT-100K, Sapporo, and Yokohama datasets, respectively.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

跨域识别 多模态模型 交通标志识别
相关文章