cs.AI updates on arXiv.org 07月24日 13:31
Constructing Optimal Noise Channels for Enhanced Robustness in Quantum Machine Learning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了量子机器学习中的安全防护问题,通过构建噪声通道与差分隐私的联系,实现模型安全,并评估了不同编码方法对分类器鲁棒性的影响。

arXiv:2404.16417v2 Announce Type: replace-cross Abstract: With the rapid advancement of Quantum Machine Learning (QML), the critical need to enhance security measures against adversarial attacks and protect QML models becomes increasingly evident. In this work, we outline the connection between quantum noise channels and differential privacy (DP), by constructing a family of noise channels which are inherently $\epsilon$-DP: $(\alpha, \gamma)$-channels. Through this approach, we successfully replicate the $\epsilon$-DP bounds observed for depolarizing and random rotation channels, thereby affirming the broad generality of our framework. Additionally, we use a semi-definite program to construct an optimally robust channel. In a small-scale experimental evaluation, we demonstrate the benefits of using our optimal noise channel over depolarizing noise, particularly in enhancing adversarial accuracy. Moreover, we assess how the variables $\alpha$ and $\gamma$ affect the certifiable robustness and investigate how different encoding methods impact the classifier's robustness.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

量子机器学习 安全防护 差分隐私 噪声通道 鲁棒性
相关文章