cs.AI updates on arXiv.org 07月24日 13:31
Enhancing Quantum Federated Learning with Fisher Information-Based Optimization
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种量子联邦学习算法,利用Fisher信息解决联邦学习中高通信成本、数据异构、隐私威胁等问题,通过实验验证其有效性和可行性。

arXiv:2507.17580v1 Announce Type: cross Abstract: Federated Learning (FL) has become increasingly popular across different sectors, offering a way for clients to work together to train a global model without sharing sensitive data. It involves multiple rounds of communication between the global model and participating clients, which introduces several challenges like high communication costs, heterogeneous client data, prolonged processing times, and increased vulnerability to privacy threats. In recent years, the convergence of federated learning and parameterized quantum circuits has sparked significant research interest, with promising implications for fields such as healthcare and finance. By enabling decentralized training of quantum models, it allows clients or institutions to collaboratively enhance model performance and outcomes while preserving data privacy. Recognizing that Fisher information can quantify the amount of information that a quantum state carries under parameter changes, thereby providing insight into its geometric and statistical properties. We intend to leverage this property to address the aforementioned challenges. In this work, we propose a Quantum Federated Learning (QFL) algorithm that makes use of the Fisher information computed on local client models, with data distributed across heterogeneous partitions. This approach identifies the critical parameters that significantly influence the quantum model's performance, ensuring they are preserved during the aggregation process. Our research assessed the effectiveness and feasibility of QFL by comparing its performance against other variants, and exploring the benefits of incorporating Fisher information in QFL settings. Experimental results on ADNI and MNIST datasets demonstrate the effectiveness of our approach in achieving better performance and robustness against the quantum federated averaging method.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

量子联邦学习 Fisher信息 隐私保护
相关文章