cs.AI updates on arXiv.org 07月24日 13:31
Integrating Belief Domains into Probabilistic Logic Programs
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出基于扩展分布语义的区间概率逻辑编程,引入信念函数,以解决点概率表达不确定性困难的问题,并描述了新框架的实用特性。

arXiv:2507.17291v1 Announce Type: cross Abstract: Probabilistic Logic Programming (PLP) under the Distribution Semantics is a leading approach to practical reasoning under uncertainty. An advantage of the Distribution Semantics is its suitability for implementation as a Prolog or Python library, available through two well-maintained implementations, namely ProbLog and cplint/PITA. However, current formulations of the Distribution Semantics use point-probabilities, making it difficult to express epistemic uncertainty, such as arises from, for example, hierarchical classifications from computer vision models. Belief functions generalize probability measures as non-additive capacities, and address epistemic uncertainty via interval probabilities. This paper introduces interval-based Capacity Logic Programs based on an extension of the Distribution Semantics to include belief functions, and describes properties of the new framework that make it amenable to practical applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

概率逻辑编程 分布语义 信念函数 区间概率 逻辑程序
相关文章