cs.AI updates on arXiv.org 07月24日 13:31
Asymmetric Lesion Detection with Geometric Patterns and CNN-SVM Classification
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本研究通过标注数据集,结合CNN和SVM算法,对皮肤癌病变形状进行几何分析和分类,显著提高诊断准确率。

arXiv:2507.17185v1 Announce Type: cross Abstract: In dermoscopic images, which allow visualization of surface skin structures not visible to the naked eye, lesion shape offers vital insights into skin diseases. In clinically practiced methods, asymmetric lesion shape is one of the criteria for diagnosing melanoma. Initially, we labeled data for a non-annotated dataset with symmetrical information based on clinical assessments. Subsequently, we propose a supporting technique, a supervised learning image processing algorithm, to analyze the geometrical pattern of lesion shape, aiding non-experts in understanding the criteria of an asymmetric lesion. We then utilize a pre-trained convolutional neural network (CNN) to extract shape, color, and texture features from dermoscopic images for training a multiclass support vector machine (SVM) classifier, outperforming state-of-the-art methods from the literature. In the geometry-based experiment, we achieved a 99.00% detection rate for dermatological asymmetric lesions. In the CNN-based experiment, the best performance is found with 94% Kappa Score, 95% Macro F1-score, and 97% Weighted F1-score for classifying lesion shapes (Asymmetric, Half-Symmetric, and Symmetric).

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

皮肤癌诊断 深度学习 CNN SVM 病变形状分析
相关文章