cs.AI updates on arXiv.org 07月24日 13:31
Tabular Diffusion based Actionable Counterfactual Explanations for Network Intrusion Detection
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于扩散的对抗性解释框架,为网络入侵检测提供可操作的解释,并通过比较分析现有算法,展示其在实例和全局层面的应用效果。

arXiv:2507.17161v1 Announce Type: cross Abstract: Modern network intrusion detection systems (NIDS) frequently utilize the predictive power of complex deep learning models. However, the "black-box" nature of such deep learning methods adds a layer of opaqueness that hinders the proper understanding of detection decisions, trust in the decisions and prevent timely countermeasures against such attacks. Explainable AI (XAI) methods provide a solution to this problem by providing insights into the causes of the predictions. The majority of the existing XAI methods provide explanations which are not convenient to convert into actionable countermeasures. In this work, we propose a novel diffusion-based counterfactual explanation framework that can provide actionable explanations for network intrusion attacks. We evaluated our proposed algorithm against several other publicly available counterfactual explanation algorithms on 3 modern network intrusion datasets. To the best of our knowledge, this work also presents the first comparative analysis of existing counterfactual explanation algorithms within the context of network intrusion detection systems. Our proposed method provide minimal, diverse counterfactual explanations out of the tested counterfactual explanation algorithms in a more efficient manner by reducing the time to generate explanations. We also demonstrate how counterfactual explanations can provide actionable explanations by summarizing them to create a set of global rules. These rules are actionable not only at instance level but also at the global level for intrusion attacks. These global counterfactual rules show the ability to effectively filter out incoming attack queries which is crucial for efficient intrusion detection and defense mechanisms.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

XAI 网络入侵检测 对抗性解释 扩散模型 可操作解释
相关文章