cs.AI updates on arXiv.org 07月24日 13:31
Towards Trustworthy AI: Secure Deepfake Detection using CNNs and Zero-Knowledge Proofs
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出TrustDefender,一个包含轻量级CNN实时检测深度伪造图像和零知识证明协议验证检测结果的框架,解决信息完整性威胁,实现高效隐私保护。

arXiv:2507.17010v1 Announce Type: cross Abstract: In the era of synthetic media, deepfake manipulations pose a significant threat to information integrity. To address this challenge, we propose TrustDefender, a two-stage framework comprising (i) a lightweight convolutional neural network (CNN) that detects deepfake imagery in real-time extended reality (XR) streams, and (ii) an integrated succinct zero-knowledge proof (ZKP) protocol that validates detection results without disclosing raw user data. Our design addresses both the computational constraints of XR platforms while adhering to the stringent privacy requirements in sensitive settings. Experimental evaluations on multiple benchmark deepfake datasets demonstrate that TrustDefender achieves 95.3% detection accuracy, coupled with efficient proof generation underpinned by rigorous cryptography, ensuring seamless integration with high-performance artificial intelligence (AI) systems. By fusing advanced computer vision models with provable security mechanisms, our work establishes a foundation for reliable AI in immersive and privacy-sensitive applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度伪造检测 隐私保护 零知识证明 CNN XR平台
相关文章