cs.AI updates on arXiv.org 07月24日 13:31
Confidence Optimization for Probabilistic Encoding
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种置信度优化概率编码(CPE)方法,通过引入置信度感知机制和L2正则化,改善距离可靠性,增强神经网络在分类任务中的泛化能力。

arXiv:2507.16881v1 Announce Type: cross Abstract: Probabilistic encoding introduces Gaussian noise into neural networks, enabling a smooth transition from deterministic to uncertain states and enhancing generalization ability. However, the randomness of Gaussian noise distorts point-based distance measurements in classification tasks. To mitigate this issue, we propose a confidence optimization probabilistic encoding (CPE) method that improves distance reliability and enhances representation learning. Specifically, we refine probabilistic encoding with two key strategies: First, we introduce a confidence-aware mechanism to adjust distance calculations, ensuring consistency and reliability in probabilistic encoding classification tasks. Second, we replace the conventional KL divergence-based variance regularization, which relies on unreliable prior assumptions, with a simpler L2 regularization term to directly constrain variance. The method we proposed is model-agnostic, and extensive experiments on natural language classification tasks demonstrate that our method significantly improves performance and generalization on both the BERT and the RoBERTa model.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经网络 概率编码 置信度优化 CPE方法 泛化能力
相关文章