cs.AI updates on arXiv.org 07月24日 13:31
HIPPO-Video: Simulating Watch Histories with Large Language Models for Personalized Video Highlighting
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出HIPPO-Video,一个基于LLM的用户模拟器生成的个性化视频高亮数据集,包含2040对观看历史与显著度评分,通过实验证明其在视频高亮方面的潜力。

arXiv:2507.16873v1 Announce Type: cross Abstract: The exponential growth of video content has made personalized video highlighting an essential task, as user preferences are highly variable and complex. Existing video datasets, however, often lack personalization, relying on isolated videos or simple text queries that fail to capture the intricacies of user behavior. In this work, we introduce HIPPO-Video, a novel dataset for personalized video highlighting, created using an LLM-based user simulator to generate realistic watch histories reflecting diverse user preferences. The dataset includes 2,040 (watch history, saliency score) pairs, covering 20,400 videos across 170 semantic categories. To validate our dataset, we propose HiPHer, a method that leverages these personalized watch histories to predict preference-conditioned segment-wise saliency scores. Through extensive experiments, we demonstrate that our method outperforms existing generic and query-based approaches, showcasing its potential for highly user-centric video highlighting in real-world scenarios.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

个性化视频高亮 数据集 LLM用户模拟器 视频显著度 实验验证
相关文章