cs.AI updates on arXiv.org 07月24日 13:31
Post-Disaster Affected Area Segmentation with a Vision Transformer (ViT)-based EVAP Model using Sentinel-2 and Formosat-5 Imagery
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

提出一种基于ViT的深度学习框架,用于从遥感影像中精炼灾害区域分割,支持台湾太空机构EVAP产品,通过PCA特征空间分析和置信度指数构建弱监督训练集,应用于多波段影像,提升灾害地图的精确度。

arXiv:2507.16849v1 Announce Type: cross Abstract: We propose a vision transformer (ViT)-based deep learning framework to refine disaster-affected area segmentation from remote sensing imagery, aiming to support and enhance the Emergent Value Added Product (EVAP) developed by the Taiwan Space Agency (TASA). The process starts with a small set of manually annotated regions. We then apply principal component analysis (PCA)-based feature space analysis and construct a confidence index (CI) to expand these labels, producing a weakly supervised training set. These expanded labels are then used to train ViT-based encoder-decoder models with multi-band inputs from Sentinel-2 and Formosat-5 imagery. Our architecture supports multiple decoder variants and multi-stage loss strategies to improve performance under limited supervision. During the evaluation, model predictions are compared with higher-resolution EVAP output to assess spatial coherence and segmentation consistency. Case studies on the 2022 Poyang Lake drought and the 2023 Rhodes wildfire demonstrate that our framework improves the smoothness and reliability of segmentation results, offering a scalable approach for disaster mapping when accurate ground truth is unavailable.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

ViT 深度学习 灾害区域分割 遥感影像 EVAP
相关文章