arXiv:2507.16826v1 Announce Type: cross Abstract: Retrieval Augmented Generation (RAG) has gradually emerged as a promising paradigm for enhancing the accuracy and factual consistency of content generated by large language models (LLMs). However, existing RAG studies primarily focus on retrieving isolated segments using similarity-based matching methods, while overlooking the intrinsic connections between them. This limitation hampers performance in RAG tasks. To address this, we propose QMKGF, a Query-Aware Multi-Path Knowledge Graph Fusion Approach for Enhancing Retrieval Augmented Generation. First, we design prompt templates and employ general-purpose LLMs to extract entities and relations, thereby generating a knowledge graph (KG) efficiently. Based on the constructed KG, we introduce a multi-path subgraph construction strategy that incorporates one-hop relations, multi-hop relations, and importance-based relations, aiming to improve the semantic relevance between the retrieved documents and the user query. Subsequently, we designed a query-aware attention reward model that scores subgraph triples based on their semantic relevance to the query. Then, we select the highest score subgraph and enrich subgraph with additional triples from other subgraphs that are highly semantically relevant to the query. Finally, the entities, relations, and triples within the updated subgraph are utilised to expand the original query, thereby enhancing its semantic representation and improving the quality of LLMs' generation. We evaluate QMKGF on the SQuAD, IIRC, Culture, HotpotQA, and MuSiQue datasets. On the HotpotQA dataset, our method achieves a ROUGE-1 score of 64.98\%, surpassing the BGE-Rerank approach by 9.72 percentage points (from 55.26\% to 64.98\%). Experimental results demonstrate the effectiveness and superiority of the QMKGF approach.