cs.AI updates on arXiv.org 07月24日 13:31
Disaster Informatics after the COVID-19 Pandemic: Bibliometric and Topic Analysis based on Large-scale Academic Literature
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文对2020年1月至2022年9月间发表的灾情报学文献进行综合分析,揭示疫情对研究优先级的影响,以及各国、机构、作者在灾情报学领域的合作与趋势。

arXiv:2507.16820v1 Announce Type: cross Abstract: This study presents a comprehensive bibliometric and topic analysis of the disaster informatics literature published between January 2020 to September 2022. Leveraging a large-scale corpus and advanced techniques such as pre-trained language models and generative AI, we identify the most active countries, institutions, authors, collaboration networks, emergent topics, patterns among the most significant topics, and shifts in research priorities spurred by the COVID-19 pandemic. Our findings highlight (1) countries that were most impacted by the COVID-19 pandemic were also among the most active, with each country having specific research interests, (2) countries and institutions within the same region or share a common language tend to collaborate, (3) top active authors tend to form close partnerships with one or two key partners, (4) authors typically specialized in one or two specific topics, while institutions had more diverse interests across several topics, and (5) the COVID-19 pandemic has influenced research priorities in disaster informatics, placing greater emphasis on public health. We further demonstrate that the field is converging on multidimensional resilience strategies and cross-sectoral data-sharing collaborations or projects, reflecting a heightened awareness of global vulnerability and interdependency. Collecting and quality assurance strategies, data analytic practices, LLM-based topic extraction and summarization approaches, and result visualization tools can be applied to comparable datasets or solve similar analytic problems. By mapping out the trends in disaster informatics, our analysis offers strategic insights for policymakers, practitioners, and scholars aiming to enhance disaster informatics capacities in an increasingly uncertain and complex risk landscape.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

灾情报学 文献分析 疫情影响 研究趋势
相关文章