36kr-科技 07月24日 12:02
首个多模态工业信号基座模型FISHER,权重已开源,来自清华&上交等
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

近期,研究者们联合发布了首个多模态工业信号基座模型 FISHER,该模型采用“搭积木”的方式统一建模异质工业信号。文章解决了工业信号分析中的M5问题:多模态、多采样率、多尺度、多任务和少故障。FISHER模型以子带为建模单元,通过短时傅里叶变换(STFT)处理不同采样率的信号,并利用“老师-学生”自蒸馏进行预训练。在RMIS基准测试中,FISHER展现出强大的泛化能力和优越的scaling效果,大幅提升了故障诊断性能,并能有效应对变切分比场景。

💡 FISHER模型是首个面向多模态工业信号的基座模型,它创新性地采用“搭积木”的方式,以子带为建模单元,实现了对异质工业信号的统一建模。该模型能够处理任意采样率的工业信号,解决了传统方法因重采样而丢失高频信息的问题,通过固定宽度的子带拼接,有效利用了不同采样率下的信号信息,从而提升了信号表征能力。

🛠️ 在模型架构上,FISHER结合了ViT Encoder和CNN Decoder,并采用了“老师-学生”自蒸馏的预训练策略。通过掩码子带和蒸馏机制,使得模型能够学习到更鲁棒的信号特征。目前已开源tiny、mini和small三种尺寸的模型,均为在海量混合数据集上预训练而成,为工业信号分析提供了强大的基础模型。

📊 为了全面评估模型性能,研究者提出了RMIS基准,包含异常检测和故障诊断任务,涵盖多种模态。实验结果显示,FISHER模型在RMIS基准上相较于现有基线模型有显著提升,尤其在故障诊断任务上表现突出,证明了其利用完整频带信息的优势。同时,FISHER的scaling效果远超基线模型,即使是最小的模型也能取得优异成绩。

🚀 研究还发现,100M模型参数量可能是工业信号基座模型scaling的一个分界点,并指出数据配比和清洗是scaling up的关键。此外,FISHER在变切分比场景下也展现出卓越的性能,其曲线下面积远大于其他模型,证明了其在不同数据划分方式下的鲁棒性。

近期,来自清华大学、上海交通大学、北京华控智加科技有限公司和华北电力大学的研究者联合发布首个多模态工业信号基座模型 FISHER,采用搭积木的方法对异质工业信号进行统一建模。目前技术报告和权重均已开源,欢迎使用!

论文链接:https://arxiv.org/abs/2507.16696

GitHub 仓库:https://github.com/jianganbai/FISHER

研究背景

近年来,越来越多的工业设备被安装上传感器以监控工作状态。然而安装传感器容易,如何高效分析工业信号却很难,因为不同传感器采集的工业信号具有极大的异质性。本文中,我们将其总结为 M5 问题:多模态、多采样率、多尺度、多任务和少故障。

受到 M5 问题影响,现有方法大多只分析小范围的工业信号,例如基于振动的轴承故障诊断,所采用的模型也均为在小数据集上训练的小模型。然而这些模型未能发掘大数据训练的优势,也未能利用不同模态之间的互补性。另一方面,对于工业运维的每个子问题,都需要单独开发和部署专门的模型,大大增加了实际应用的复杂度。

研究动机

尽管工业信号表面上差异大,其内在特征和语义信息却很相似:

语义信息相同:信号都反映了相同的健康状态。

产生机理相似:声音(鼓膜震动)和振动同根同源。

分析手段相似:基本都采用谱分析方法。

故障模式相似:设备由零件组成,不同设备之间有借鉴性。

任务特征共享:一个特征向量可表征多个健康管理任务。

基于此,我们认为是可以使用单一模型对异质工业信号进行统一建模。由于信号内部存在相似性,通过 scaling,可以让模型逐渐学会这些相似性,进而迸发出更为强大的表征能力,实现里程碑式提升。由此我们开发了 FISHER 模型。

FISHER 模型介绍

FISHER 模型是首个面向多模态工业信号的基座模型。它以子带为建模单元,通过堆积木的方式表征整段信号,可处理任意采样率的工业信号。详细介绍如下:

子带建模

谱分析是语音和信号分析常用的手段。与语音模型常采用的 Mel 谱不同的是,FISHER 采用短时傅里叶变换(STFT)作为信号输入特征,这是由于 1)故障分量往往出现在高频 2)对于旋转类机械,倍频关系往往很重要。为保证不同采样率下时频分辨率相同,FISHER 中的 STFT 采用固定时长的窗长和帧移。

当数据量增大时,多采样率是模型必须要应对的问题。之前方法将信号全部重采样至固定采样率(例如 16 kHz),从而丢失了关键的高频信息,特别是对于 44.1 kHz 及以上的高带宽信号。在 FISHER 中,我们不再进行重采样,而是利用信号在不同采样率下的特点进行建模。

如下图所示,对同一信号源使用不同采样率进行观测时,共有频带基本一致,而高采样率会有额外的高频子带,也就是说高采样率的增益来源于更多子带信息。而另一方面,工业信号常见的采样率有 16 kHz,32 kHz,44.1 kHz 和 48 kHz,这些采样率近似存在公约数(如 2 kHz 和 4 kHz),故 STFT 谱可视作多个固定宽度子带的拼接。

因此 FISHER 采用固定宽度的子带作为建模单元,将子带信息用搭积木的方式拼接成整段信号的表征。具体而言,STFT 谱被切分为固定宽度的子带,每个子带被模型单独处理。最终的信号表征是每个子带表征的拼接。

模型架构

FISHER 包括 1 个 ViT Encoder 和 1 个 CNN Decoder,采用「老师 - 学生」自蒸馏预训练。具体而言,老师 Encoder 是学生 Encoder 的指数滑动平均(EMA),仅学生 Encoder 和学生 Decoder 具有梯度。切分后的子带的 80% 被 mask,未被 mask 的 20% 送入学生 Encoder,处理后再与被 mask 部分按原位置拼接,送入学生 Decoder。老师 Encoder 则输入整个子带,输出则作为蒸馏的目标。自蒸馏过程分别在 [CLS] 层次和 patch 层次进行监督。预训练结束后,仅保留学生 Encoder 用于后续评估。

我们目前开源了 FISHER 的 3 个不同尺寸:tiny(5.5M),mini(10M)和 small(22M)。所有模型均在 1.7 万小时的混合数据集上进行预训练。

RMIS 基准介绍

为评估模型在各种健康管理任务上的性能,我们提出了 RMIS 基准。RMIS 基准包含 5 个异常检测数据集和 13 个故障诊断数据集,涵盖 4 个模态。这里异常检测为正常 / 异常 2 分类问题,但训练集不包含异常;故障诊断为多分类问题,训练集和测试集均包含所有类别。为检验模型固有的性能,模型在所有数据集上均使用相同的 KNN 配置进行推断,不进行微调。

实验结果

我们先在 RMIS 基准上对常见预训练模型进行筛选,然后采用 5 个最好的模型作为基线,涵盖了 5M 到 1.2B 的多个尺寸。由于语音模型的效果普遍偏差,故我们并未对比。

基准得分

在 RMIS 基准上,FISHER 的 3 个版本分别较基线至少提升了 3.91%,4.34% 和 5.03%,展现出强大的泛化能力。按任务分析,在异常检测任务上,FISHER 仅略低于 BEATs;而在故障诊断任务上,FISHER 大幅超过 BEATs 在内的所有基线,这主要得益于 FISHER 能利用完整的频带,而基线模型只能利用到 16 kHz。此外,目前开源的 FISHER 模型最大也只有 22M,远小于基线常见的 90M。

Scaling 效果

上图对比了各个模型的 RMIS 得分随模型大小变化的曲线。可以看到 FISHER 的曲线远高于基线系统的曲线,即使是最小的 FISHER-tiny 也能超过所有基线系统。这说明 FISHER 的预训练模式更优越,scaling 更有效。

另一方面,我们观察到 100M 似乎是 scaling 曲线的分界点。我们猜测这是由于工业信号重复度较高,现有大规模数据集中的工业信号去重后至多支持 100M 模型的训练。因此训练信号基座模型时,数据的配比需要增大,数据清洗将是 scaling up 的关键。此外,考虑到 FISHER 的成功,Test-Time Scaling 似乎也是可行的方向。

变切分比

对于 12 个不提供官方切分的数据集,我们首先绘制了模型在变切分比场景下的工作曲线,然后估计了曲线下面积。如上表所示,FISHER 具有最大的曲线下面积,说明其在变切分比场景下依旧具有卓越的性能。

本文来自微信公众号“机器之心”,36氪经授权发布。

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

FISHER 工业信号 基座模型 多模态 人工智能
相关文章