cs.AI updates on arXiv.org 07月23日 12:03
Revealing Bias Formation in Deep Neural Networks Through the Geometric Mechanisms of Human Visual Decoupling
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章提出将深度神经网络中特定类别感知流形的几何复杂性与其模型偏差联系起来,并通过Perceptual-Manifold-Geometry库分析几何属性,揭示识别能力差异及引入的偏差。

arXiv:2502.11809v3 Announce Type: replace-cross Abstract: Deep neural networks (DNNs) often exhibit biases toward certain categories during object recognition, even under balanced training data conditions. The intrinsic mechanisms underlying these biases remain unclear. Inspired by the human visual system, which decouples object manifolds through hierarchical processing to achieve object recognition, we propose a geometric analysis framework linking the geometric complexity of class-specific perceptual manifolds in DNNs to model bias. Our findings reveal that differences in geometric complexity can lead to varying recognition capabilities across categories, introducing biases. To support this analysis, we present the Perceptual-Manifold-Geometry library, designed for calculating the geometric properties of perceptual manifolds.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度神经网络 识别偏差 几何分析 感知流形 模型偏差
相关文章