cs.AI updates on arXiv.org 07月23日 12:03
Conformal Predictions for Human Action Recognition with Vision-Language Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨如何通过Conformal Prediction技术提高基于视觉语言模型的HAR系统可靠性,提出调整softmax预测温度以缓解长尾分布问题,为多模态人机交互提供新思路。

arXiv:2502.06631v2 Announce Type: replace-cross Abstract: Human-in-the-Loop (HITL) systems are essential in high-stakes, real-world applications where AI must collaborate with human decision-makers. This work investigates how Conformal Prediction (CP) techniques, which provide rigorous coverage guarantees, can enhance the reliability of state-of-the-art human action recognition (HAR) systems built upon Vision-Language Models (VLMs). We demonstrate that CP can significantly reduce the average number of candidate classes without modifying the underlying VLM. However, these reductions often result in distributions with long tails which can hinder their practical utility. To mitigate this, we propose tuning the temperature of the softmax prediction, without using additional calibration data. This work contributes to ongoing efforts for multi-modal human-AI interaction in dynamic real-world environments.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

HITL系统 视觉语言模型 人机交互 可靠性提升 Conformal Prediction
相关文章