cs.AI updates on arXiv.org 07月23日 12:03
Symbolic Graph Intelligence: Hypervector Message Passing for Learning Graph-Level Patterns with Tsetlin Machines
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

提出一种基于稀疏二进制超向量和Tsetlin机器的多层符号框架,实现通用图分类。该方法通过结构化信息传递,将节点、边和属性信息编码成符号超向量,同时构建局部可解释框架,在TUDataset基准测试中展示出与神经网络模型相媲美的准确性和强符号透明度。

arXiv:2507.16537v1 Announce Type: cross Abstract: We propose a multilayered symbolic framework for general graph classification that leverages sparse binary hypervectors and Tsetlin Machines. Each graph is encoded through structured message passing, where node, edge, and attribute information are bound and bundled into a symbolic hypervector. This process preserves the hierarchical semantics of the graph through layered binding from node attributes to edge relations to structural roles resulting in a compact, discrete representation. We also formulate a local interpretability framework which lends itself to a key advantage of our approach being locally interpretable. We validate our method on TUDataset benchmarks, demonstrating competitive accuracy with strong symbolic transparency compared to neural graph models.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

图分类 符号化方法 Tsetlin机器 可解释性 神经网络
相关文章