cs.AI updates on arXiv.org 07月23日 12:03
Reducing GPU Memory Fragmentation via Spatio-Temporal Planning for Efficient Large-Scale Model Training
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

针对大型语言模型训练中GPU内存压力问题,STWeaver通过空间时间规律优化GPU内存分配,提高深度学习框架训练效率。

arXiv:2507.16274v1 Announce Type: cross Abstract: The rapid scaling of large language models (LLMs) has significantly increased GPU memory pressure, which is further aggravated by training optimization techniques such as virtual pipeline and recomputation that disrupt tensor lifespans and introduce considerable memory fragmentation. Default GPU memory allocators of popular deep learning frameworks like PyTorch use online strategies without knowledge of tensor lifespans, which can waste up to 43\% of memory and cause out-of-memory errors, rendering optimization techniques ineffective or even unusable. To address this, we introduce STWeaver, a GPU memory allocator for deep learning frameworks that reduces fragmentation by exploiting the spatial and temporal regularity in memory allocation behaviors of training workloads. STWeaver introduces a novel paradigm that combines offline planning with online allocation. The offline planning leverages spatio-temporal regularities to generate a near-optimal allocation plan, while the online allocation handles complex and dynamic models such as Mixture-of-Experts (MoE). Built as a pluggable PyTorch allocator, STWeaver reduces fragmentation ratio on average by 79.2\% (up to 100\%) across both dense and sparse models, with negligible overhead. This enables more efficient, high-throughput training configurations and improves performance by up to 32.5\%.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

STWeaver GPU内存分配 深度学习框架
相关文章