cs.AI updates on arXiv.org 07月23日 12:03
Dual Turing Test: A Framework for Detecting and Mitigating Undetectable AI
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种结合“双重图灵测试”、正式对抗分类游戏与强化学习(RL)的统一框架,强调质量阈值、难度分级与最小-最大界限的融合创新。

arXiv:2507.15907v1 Announce Type: cross Abstract: In this short note, we propose a unified framework that bridges three areas: (1) a flipped perspective on the Turing Test, the "dual Turing test", in which a human judge's goal is to identify an AI rather than reward a machine for deception; (2) a formal adversarial classification game with explicit quality constraints and worst-case guarantees; and (3) a reinforcement learning (RL) alignment pipeline that uses an undetectability detector and a set of quality related components in its reward model. We review historical precedents, from inverted and meta-Turing variants to modern supervised reverse-Turing classifiers, and highlight the novelty of combining quality thresholds, phased difficulty levels, and minimax bounds. We then formalize the dual test: define the judge's task over N independent rounds with fresh prompts drawn from a prompt space Q, introduce a quality function Q and parameters tau and delta, and cast the interaction as a two-player zero-sum game over the adversary's feasible strategy set M. Next, we map this minimax game onto an RL-HF style alignment loop, in which an undetectability detector D provides negative reward for stealthy outputs, balanced by a quality proxy that preserves fluency. Throughout, we include detailed explanations of each component notation, the meaning of inner minimization over sequences, phased tests, and iterative adversarial training and conclude with a suggestion for a couple of immediate actions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

图灵测试 对抗分类 强化学习 质量评估 人工智能
相关文章