cs.AI updates on arXiv.org 07月23日 12:03
Foundation Models and Transformers for Anomaly Detection: A Survey
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了深度学习背景下,Transformers和基础模型在视觉异常检测(VAD)领域的变革性作用,分析了其在长程依赖建模、上下文建模和数据稀缺性等方面的应对策略,并对VAD方法进行了分类,总结了当前技术优势、局限和趋势。

arXiv:2507.15905v1 Announce Type: cross Abstract: In line with the development of deep learning, this survey examines the transformative role of Transformers and foundation models in advancing visual anomaly detection (VAD). We explore how these architectures, with their global receptive fields and adaptability, address challenges such as long-range dependency modeling, contextual modeling and data scarcity. The survey categorizes VAD methods into reconstruction-based, feature-based and zero/few-shot approaches, highlighting the paradigm shift brought about by foundation models. By integrating attention mechanisms and leveraging large-scale pre-training, Transformers and foundation models enable more robust, interpretable, and scalable anomaly detection solutions. This work provides a comprehensive review of state-of-the-art techniques, their strengths, limitations, and emerging trends in leveraging these architectures for VAD.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 视觉异常检测 Transformers 基础模型 VAD
相关文章