cs.AI updates on arXiv.org 07月23日 12:03
Salience Adjustment for Context-Based Emotion Recognition
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于贝叶斯线索整合和视觉语言模型的情境感知情绪识别框架,通过显著度调整动态权重面部和情境信息,提升识别准确率,并在囚犯困境场景中验证其有效性。

arXiv:2507.15878v1 Announce Type: cross Abstract: Emotion recognition in dynamic social contexts requires an understanding of the complex interaction between facial expressions and situational cues. This paper presents a salience-adjusted framework for context-aware emotion recognition with Bayesian Cue Integration (BCI) and Visual-Language Models (VLMs) to dynamically weight facial and contextual information based on the expressivity of facial cues. We evaluate this approach using human annotations and automatic emotion recognition systems in prisoner's dilemma scenarios, which are designed to evoke emotional reactions. Our findings demonstrate that incorporating salience adjustment enhances emotion recognition performance, offering promising directions for future research to extend this framework to broader social contexts and multimodal applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

情绪识别 情境感知 贝叶斯线索整合 视觉语言模型
相关文章