cs.AI updates on arXiv.org 07月23日 12:03
Agentic RAG with Knowledge Graphs for Complex Multi-Hop Reasoning in Real-World Applications
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了INRAExplorer,一种针对INRAE科学数据的RAG系统,通过多工具架构和知识图谱,提高复杂查询处理能力,实现迭代查询、多跳推理和结构化答案生成。

arXiv:2507.16507v1 Announce Type: new Abstract: Conventional Retrieval-Augmented Generation (RAG) systems enhance Large Language Models (LLMs) but often fall short on complex queries, delivering limited, extractive answers and struggling with multiple targeted retrievals or navigating intricate entity relationships. This is a critical gap in knowledge-intensive domains. We introduce INRAExplorer, an agentic RAG system for exploring the scientific data of INRAE (France's National Research Institute for Agriculture, Food and Environment). INRAExplorer employs an LLM-based agent with a multi-tool architecture to dynamically engage a rich knowledge base, through a comprehensive knowledge graph derived from open access INRAE publications. This design empowers INRAExplorer to conduct iterative, targeted queries, retrieve exhaustive datasets (e.g., all publications by an author), perform multi-hop reasoning, and deliver structured, comprehensive answers. INRAExplorer serves as a concrete illustration of enhancing knowledge interaction in specialized fields.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

RAG系统 科研数据检索 知识图谱 多工具架构
相关文章