cs.AI updates on arXiv.org 07月23日 12:03
Re-evaluating Short- and Long-Term Trend Factors in CTA Replication: A Bayesian Graphical Approach
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过贝叶斯图形模型动态分解CTA收益,探讨短期、长期趋势与市场β因素对策略风险调整绩效的影响。

arXiv:2507.15876v1 Announce Type: new Abstract: Commodity Trading Advisors (CTAs) have historically relied on trend-following rules that operate on vastly different horizons from long-term breakouts that capture major directional moves to short-term momentum signals that thrive in fast-moving markets. Despite a large body of work on trend following, the relative merits and interactions of short-versus long-term trend systems remain controversial. This paper adds to the debate by (i) dynamically decomposing CTA returns into short-term trend, long-term trend and market beta factors using a Bayesian graphical model, and (ii) showing how the blend of horizons shapes the strategy's risk-adjusted performance.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

CTA策略 风险调整绩效 贝叶斯图形模型
相关文章