cs.AI updates on arXiv.org 07月22日 12:44
Robust Control with Gradient Uncertainty
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种应对强化学习中值函数梯度不确定性的新控制理论,通过建立Hamilton-Jacobi-Bellman-Isaacs方程,分析非零梯度不确定性下的非线性控制问题,并验证了新算法在稳定训练中的有效性。

arXiv:2507.15082v1 Announce Type: cross Abstract: We introduce a novel extension to robust control theory that explicitly addresses uncertainty in the value function's gradient, a form of uncertainty endemic to applications like reinforcement learning where value functions are approximated. We formulate a zero-sum dynamic game where an adversary perturbs both system dynamics and the value function gradient, leading to a new, highly nonlinear partial differential equation: the Hamilton-Jacobi-Bellman-Isaacs Equation with Gradient Uncertainty (GU-HJBI). We establish its well-posedness by proving a comparison principle for its viscosity solutions under a uniform ellipticity condition. Our analysis of the linear-quadratic (LQ) case yields a key insight: we prove that the classical quadratic value function assumption fails for any non-zero gradient uncertainty, fundamentally altering the problem structure. A formal perturbation analysis characterizes the non-polynomial correction to the value function and the resulting nonlinearity of the optimal control law, which we validate with numerical studies. Finally, we bridge theory to practice by proposing a novel Gradient-Uncertainty-Robust Actor-Critic (GURAC) algorithm, accompanied by an empirical study demonstrating its effectiveness in stabilizing training. This work provides a new direction for robust control, holding significant implications for fields where function approximation is common, including reinforcement learning and computational finance.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

控制理论 不确定性处理 强化学习
相关文章