cs.AI updates on arXiv.org 07月22日 12:44
FOCUS: Fused Observation of Channels for Unveiling Spectra
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出FOCUS框架,解决超光谱图像中Vision Transformers的可解释性问题,通过引入特定光谱提示和可学习[SINK]标记,实现高效的空间光谱可解释性,显著提升模型性能。

arXiv:2507.14787v1 Announce Type: cross Abstract: Hyperspectral imaging (HSI) captures hundreds of narrow, contiguous wavelength bands, making it a powerful tool in biology, agriculture, and environmental monitoring. However, interpreting Vision Transformers (ViTs) in this setting remains largely unexplored due to two key challenges: (1) existing saliency methods struggle to capture meaningful spectral cues, often collapsing attention onto the class token, and (2) full-spectrum ViTs are computationally prohibitive for interpretability, given the high-dimensional nature of HSI data. We present FOCUS, the first framework that enables reliable and efficient spatial-spectral interpretability for frozen ViTs. FOCUS introduces two core components: class-specific spectral prompts that guide attention toward semantically meaningful wavelength groups, and a learnable [SINK] token trained with an attraction loss to absorb noisy or redundant attention. Together, these designs make it possible to generate stable and interpretable 3D saliency maps and spectral importance curves in a single forward pass, without any gradient backpropagation or backbone modification. FOCUS improves band-level IoU by 15 percent, reduces attention collapse by over 40 percent, and produces saliency results that align closely with expert annotations. With less than 1 percent parameter overhead, our method makes high-resolution ViT interpretability practical for real-world hyperspectral applications, bridging a long-standing gap between black-box modeling and trustworthy HSI decision-making.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

超光谱图像 Vision Transformers 可解释性 FOCUS框架 图像处理
相关文章