cs.AI updates on arXiv.org 07月22日 12:44
Exploring the In-Context Learning Capabilities of LLMs for Money Laundering Detection in Financial Graphs
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨利用大型语言模型(LLMs)在金融知识图局部子图上作为推理引擎的应用,提出了一种轻量级流程,用于评估可疑程度并生成解释,以应对洗钱调查。

arXiv:2507.14785v1 Announce Type: cross Abstract: The complexity and interconnectivity of entities involved in money laundering demand investigative reasoning over graph-structured data. This paper explores the use of large language models (LLMs) as reasoning engines over localized subgraphs extracted from a financial knowledge graph. We propose a lightweight pipeline that retrieves k-hop neighborhoods around entities of interest, serializes them into structured text, and prompts an LLM via few-shot in-context learning to assess suspiciousness and generate justifications. Using synthetic anti-money laundering (AML) scenarios that reflect common laundering behaviors, we show that LLMs can emulate analyst-style logic, highlight red flags, and provide coherent explanations. While this study is exploratory, it illustrates the potential of LLM-based graph reasoning in AML and lays groundwork for explainable, language-driven financial crime analytics.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 洗钱调查 图推理 金融知识图 机器学习
相关文章