cs.AI updates on arXiv.org 07月22日 12:44
QUTCC: Quantile Uncertainty Training and Conformal Calibration for Imaging Inverse Problems
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出QUTCC技术,通过非线性缩放预测量,优化深度学习模型的不确定性量化,提高图像处理任务如MRI和显微镜去噪的准确性。

arXiv:2507.14760v1 Announce Type: cross Abstract: Deep learning models often hallucinate, producing realistic artifacts that are not truly present in the sample. This can have dire consequences for scientific and medical inverse problems, such as MRI and microscopy denoising, where accuracy is more important than perceptual quality. Uncertainty quantification techniques, such as conformal prediction, can pinpoint outliers and provide guarantees for image regression tasks, improving reliability. However, existing methods utilize a linear constant scaling factor to calibrate uncertainty bounds, resulting in larger, less informative bounds. We propose QUTCC, a quantile uncertainty training and calibration technique that enables nonlinear, non-uniform scaling of quantile predictions to enable tighter uncertainty estimates. Using a U-Net architecture with a quantile embedding, QUTCC enables the prediction of the full conditional distribution of quantiles for the imaging task. During calibration, QUTCC generates uncertainty bounds by iteratively querying the network for upper and lower quantiles, progressively refining the bounds to obtain a tighter interval that captures the desired coverage. We evaluate our method on several denoising tasks as well as compressive MRI reconstruction. Our method successfully pinpoints hallucinations in image estimates and consistently achieves tighter uncertainty intervals than prior methods while maintaining the same statistical coverage.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 不确定性量化 图像处理
相关文章