arXiv:2507.14725v1 Announce Type: cross Abstract: Prompt-based continual learning (CL) offers a parameter-efficient way to adapt large language models (LLMs) across task sequences. However, most existing methods assume task-aware inference and maintain a growing list of task-specific prompts, which limits scalability and hides latent forgetting. In this work, we introduce GRID, a unified framework that addresses two key limitations: (1) latent forgetting under task-agnostic inference, and (2) prompt memory explosion as task sequences grow. GRID integrates a task-aware decoding mechanism that improves backward transfer by leveraging representative inputs, automatic task identification, and constrained decoding. Additionally, we propose a gradient-based prompt selection strategy that compresses less informative prompts into a single aggregated representation, enabling scalable and memory-efficient lifelong learning. Extensive experiments across short-sequence, long-sequence, and negative transfer benchmarks show that GRID significantly improves backward transfer, achieves competitive forward transfer, and reduces forgotten tasks by up to 80\%, outperforming state-of-the-art methods on T5 and Flan-T5 backbones.