cs.AI updates on arXiv.org 07月22日 12:44
Combinatorial Optimization for All: Using LLMs to Aid Non-Experts in Improving Optimization Algorithms
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了大型语言模型(LLMs)在优化算法代码生成中的潜力,通过对比10种基准优化算法解决旅行商问题,发现LLMs生成的算法变体在解决质量、计算时间减少和代码复杂度简化方面优于基准算法,无需专业优化知识或高级算法实现技能。

arXiv:2503.10968v2 Announce Type: replace Abstract: Large Language Models (LLMs) have shown notable potential in code generation for optimization algorithms, unlocking exciting new opportunities. This paper examines how LLMs, rather than creating algorithms from scratch, can improve existing ones without the need for specialized expertise. To explore this potential, we selected 10 baseline optimization algorithms from various domains (metaheuristics, reinforcement learning, deterministic, and exact methods) to solve the classic Travelling Salesman Problem. The results show that our simple methodology often results in LLM-generated algorithm variants that improve over the baseline algorithms in terms of solution quality, reduction in computational time, and simplification of code complexity, all without requiring specialized optimization knowledge or advanced algorithmic implementation skills.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 优化算法 代码生成 旅行商问题 算法性能
相关文章