cs.AI updates on arXiv.org 07月22日 12:44
Cleanse: Uncertainty Estimation Approach Using Clustering-based Semantic Consistency in LLMs
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为Cleanse的基于聚类和语义一致性的不确定性估计方法,用于检测大型语言模型(LLMs)中的幻觉问题,并通过实验验证了其有效性。

arXiv:2507.14649v1 Announce Type: cross Abstract: Despite the outstanding performance of large language models (LLMs) across various NLP tasks, hallucinations in LLMs--where LLMs generate inaccurate responses--remains as a critical problem as it can be directly connected to a crisis of building safe and reliable LLMs. Uncertainty estimation is primarily used to measure hallucination levels in LLM responses so that correct and incorrect answers can be distinguished clearly. This study proposes an effective uncertainty estimation approach, \textbf{Cl}ust\textbf{e}ring-based sem\textbf{an}tic con\textbf{s}ist\textbf{e}ncy (\textbf{Cleanse}). Cleanse quantifies the uncertainty with the proportion of the intra-cluster consistency in the total consistency between LLM hidden embeddings which contain adequate semantic information of generations, by employing clustering. The effectiveness of Cleanse for detecting hallucination is validated using four off-the-shelf models, LLaMA-7B, LLaMA-13B, LLaMA2-7B and Mistral-7B and two question-answering benchmarks, SQuAD and CoQA.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 幻觉检测 不确定性估计 语义一致性 Cleanse方法
相关文章