cs.AI updates on arXiv.org 07月22日 12:44
The Elicitation Game: Evaluating Capability Elicitation Techniques
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了AI模型能力评估与激发技术,提出了一种基于电路断开训练模型的方法,并通过实验验证了其有效性。

arXiv:2502.02180v3 Announce Type: replace Abstract: Capability evaluations are required to understand and regulate AI systems that may be deployed or further developed. Therefore, it is important that evaluations provide an accurate estimation of an AI system's capabilities. However, in numerous cases, previously latent capabilities have been elicited from models, sometimes long after initial release. Accordingly, substantial efforts have been made to develop methods for eliciting latent capabilities from models. In this paper, we evaluate the effectiveness of capability elicitation techniques by intentionally training model organisms -- language models with hidden capabilities that are revealed by a password. We introduce a novel method for training model organisms, based on circuit-breaking, which is more robust to elicitation techniques than standard password-locked models. We focus on elicitation techniques based on prompting and activation steering, and compare these to fine-tuning methods. Prompting techniques can elicit the actual capability of both password-locked and circuit-broken model organisms in the MCQA setting, while steering fails to do so. For a code-generation task, only fine-tuning can elicit the hidden capabilities of our novel model organism. Additionally, our results suggest that combining techniques improves elicitation. Still, if possible, fine-tuning should be the method of choice to improve the trustworthiness of capability evaluations.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI能力评估 模型激发技术 电路断开训练 prompting技术 微调方法
相关文章