cs.AI updates on arXiv.org 07月22日 12:44
Dynamics is what you need for time-series forecasting!
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出PRO-DYN模型,旨在解决时序预测中深度学习模型的挑战。通过分析现有模型,发现学习数据动力学至关重要。实验证实了模型需要学习动力学块,并将其作为最终预测器的必要性。

arXiv:2507.15774v1 Announce Type: cross Abstract: While boundaries between data modalities are vanishing, the usual successful deep models are still challenged by simple ones in the time-series forecasting task. Our hypothesis is that this task needs models that are able to learn the data underlying dynamics. We propose to validate it through both systemic and empirical studies. We develop an original $\texttt{PRO-DYN}$ nomenclature to analyze existing models through the lens of dynamics. Two observations thus emerged: $\textbf{1}$. under-performing architectures learn dynamics at most partially, $\textbf{2}$. the location of the dynamics block at the model end is of prime importance. We conduct extensive experiments to confirm our observations on a set of performance-varying models with diverse backbones. Results support the need to incorporate a learnable dynamics block and its use as the final predictor.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

PRO-DYN模型 时序预测 深度学习 动力学学习 模型验证
相关文章