cs.AI updates on arXiv.org 07月22日 12:44
DFQ-ViT: Data-Free Quantization for Vision Transformers without Fine-tuning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为DFQ-ViT的无数据量化方法,用于视觉Transformer,通过合成样本提高量化模型质量,实现与全精度模型相当的性能,降低边缘设备部署难度。

arXiv:2507.14481v1 Announce Type: cross Abstract: Data-Free Quantization (DFQ) enables the quantization of Vision Transformers (ViTs) without requiring access to data, allowing for the deployment of ViTs on devices with limited resources. In DFQ, the quantization model must be calibrated using synthetic samples, making the quality of these synthetic samples crucial. Existing methods fail to fully capture and balance the global and local features within the samples, resulting in limited synthetic data quality. Moreover, we have found that during inference, there is a significant difference in the distributions of intermediate layer activations between the quantized and full-precision models. These issues lead to a severe performance degradation of the quantized model. To address these problems, we propose a pipeline for Data-Free Quantization for Vision Transformers (DFQ-ViT). Specifically, we synthesize samples in order of increasing difficulty, effectively enhancing the quality of synthetic data. During the calibration and inference stage, we introduce the activation correction matrix for the quantized model to align the intermediate layer activations with those of the full-precision model. Extensive experiments demonstrate that DFQ-ViT achieves remarkable superiority over existing DFQ methods and its performance is on par with models quantized through real data. For example, the performance of DeiT-T with 3-bit weights quantization is 4.29% higher than the state-of-the-art. Our method eliminates the need for fine-tuning, which not only reduces computational overhead but also lowers the deployment barriers for edge devices. This characteristic aligns with the principles of Green Learning by improving energy efficiency and facilitating real-world applications in resource-constrained environments.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

视觉Transformer 无数据量化 DFQ-ViT 模型性能 边缘设备
相关文章