cs.AI updates on arXiv.org 07月22日 12:44
It's Not That Simple. An Analysis of Simple Test-Time Scaling
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章分析了简单测试时间缩放行为,发现其主要由限制最大长度导致,与长CoT数据微调无关,而追加“Wait”可能导致模型振荡。测试时间缩放目标为提升模型性能而非复现缩放行为。

arXiv:2507.14419v1 Announce Type: cross Abstract: Prior work proposed simple test-time scaling, a method for replicating this scaling behavior with models distilled from o1-like models by manually controlling test-time compute: either scaling down by enforcing a maximum length or scaling up by iteratively appending "Wait" when the model is about to terminate its generation. This paper presents an analysis of simple test-time scaling and finds that the scaling behavior is largely attributed to scaling down by enforcing a maximum length. In contrast, fine-tuning on long CoT data distilled from o1-like models has no significant impact on scaling behavior, and scaling up by appending "Wait" leads to inconsistencies, as the model may oscillate between solutions. A key distinction exists between scaling down by enforcing a maximum length and scaling up test-time compute in o1-like models, such as DeepSeek-R1\@. These models are typically allowed to utilize as much compute as needed, with the only constraint being the model's maximum supported length. By learning to naturally scale up test-time compute during reinforcement learning, o1-like models surpass their peak performance when scaling up. In contrast, simple test-time scaling progressively imposes a lower upper limit on model performance as it scales down. While replicating the test-time scaling behavior of o1 models can be straightforward by scaling down, it is crucial to recognize that the goal of scaling test-time compute is to unlock higher performance -- beyond what the model could originally achieve -- rather than merely reproducing the appearance of scaling behavior.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

测试时间缩放 模型性能 缩放行为分析
相关文章