cs.AI updates on arXiv.org 07月22日 12:44
Schemora: schema matching via multi-stage recommendation and metadata enrichment using off-the-shelf llms
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为SCHEMORA的智能模式匹配框架,结合大型语言模型与混合检索技术,在无需依赖标注数据的情况下实现高效匹配,显著提升匹配准确率和可扩展性。

arXiv:2507.14376v1 Announce Type: cross Abstract: Schema matching is essential for integrating heterogeneous data sources and enhancing dataset discovery, yet it remains a complex and resource-intensive problem. We introduce SCHEMORA, a schema matching framework that combines large language models with hybrid retrieval techniques in a prompt-based approach, enabling efficient identification of candidate matches without relying on labeled training data or exhaustive pairwise comparisons. By enriching schema metadata and leveraging both vector-based and lexical retrieval, SCHEMORA improves matching accuracy and scalability. Evaluated on the MIMIC-OMOP benchmark, it establishes new state-of-the-art performance, with gains of 7.49% in HitRate@5 and 3.75% in HitRate@3 over previous best results. To our knowledge, this is the first LLM-based schema matching method with an open-source implementation, accompanied by analysis that underscores the critical role of retrieval and provides practical guidance on model selection.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

模式匹配 大型语言模型 数据集成
相关文章