cs.AI updates on arXiv.org 07月22日 12:44
A Reproducibility Study of Product-side Fairness in Bundle Recommendation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过实证研究,分析了捆绑推荐中的公平性问题,发现不同指标下的公平性评估存在差异,并强调了用户行为在公平性中的作用。

arXiv:2507.14352v1 Announce Type: cross Abstract: Recommender systems are known to exhibit fairness issues, particularly on the product side, where products and their associated suppliers receive unequal exposure in recommended results. While this problem has been widely studied in traditional recommendation settings, its implications for bundle recommendation (BR) remain largely unexplored. This emerging task introduces additional complexity: recommendations are generated at the bundle level, yet user satisfaction and product (or supplier) exposure depend on both the bundle and the individual items it contains. Existing fairness frameworks and metrics designed for traditional recommender systems may not directly translate to this multi-layered setting. In this paper, we conduct a comprehensive reproducibility study of product-side fairness in BR across three real-world datasets using four state-of-the-art BR methods. We analyze exposure disparities at both the bundle and item levels using multiple fairness metrics, uncovering important patterns. Our results show that exposure patterns differ notably between bundles and items, revealing the need for fairness interventions that go beyond bundle-level assumptions. We also find that fairness assessments vary considerably depending on the metric used, reinforcing the need for multi-faceted evaluation. Furthermore, user behavior plays a critical role: when users interact more frequently with bundles than with individual items, BR systems tend to yield fairer exposure distributions across both levels. Overall, our findings offer actionable insights for building fairer bundle recommender systems and establish a vital foundation for future research in this emerging domain.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

捆绑推荐 公平性 用户行为
相关文章